
Overview (2.0.0) 8/8/2013

1

Overview of jGRASP

jGRASP is a lightweight integrated development environment (IDE), created
specifically to provide visualizations for improving the comprehensibility of
software. jGRASP is implemented in Java, and thus, runs on all platforms with
a Java Virtual Machine. jGRASP supports Java, C, C++, Objective-C, Python
(new in 2.0.0), Ada, and VHDL, and it comes configured to work with several
popular compilers to provide “point and click” compile and run functions.
jGRASP is the latest IDE from the GRASP (Graphical Representations of
Algorithms, Structures, and Processes) research group at Auburn University.

jGRASP currently provides for the automatic generation of three important
software visualizations: (1) Control Structure Diagrams (Java, C, C++,
Objective-C, Python, Ada, and VHDL) for source code visualization, (2) UML
Class Diagrams (Java) for architectural visualization, and (3) Dynamic Viewers
and Viewer Canvas (new in 2.0.0) (Java) which provide runtime views for
primitives and objects including traditional data structures such as linked lists
and binary trees. jGRASP also provides an innovative Workbench, Debugger,
and Interactions which are tightly integrated with these visualizations. Each is
briefly described below.

The Control Structure Diagram (CSD) is an algorithmic level diagram which
is generated for Ada, C, C++, Objective-C, Java, VHDL, and Python. The CSD
is intended to improve the comprehensibility of source code by clearly depicting
control constructs, control paths, and the overall structure of each program unit.
The CSD, designed to fit into the space that is normally taken by indentation in
source code, is an alternative to flow charts and other graphical representations
of algorithms. The CSD is a natural extension to architectural diagrams such as
UML class diagrams.

The CSD window in jGRASP provides complete support for CSD generation as
well as editing, compiling, running, and debugging programs. After editing the
source code, regenerating a CSD is fast, efficient, and non-disruptive. The
source code can be folded based on CSD structure (e.g., methods, loops, if
statements, etc.), then unfolded level-by-level. Standard features for program
editors such as syntax based coloring, cut, copy, paste, and find-and-replace are
also provided.

The UML Class Diagram is currently generated for Java source code from all
Java class files and jar files in the current project. Dependencies among the
classes are depicted with arrows (edges) in the diagram. By selecting a class, its
members can be displayed, and by selecting an arrow between two classes, the
actual dependencies can be displayed. The class diagram is a powerful tool for

Overview (2.0.0) 8/8/2013

2

understanding a major element of object-oriented software - the dependencies
among classes.

The Dynamic Viewers for objects and primitives provide visualizations as the
user steps through a program in debug mode or invokes methods for an object
on the workbench. Textbook-like Presentation views are available for instances
of classes that represent traditional data structures. When a viewer is opened, a
structure identifier attempts to automatically recognize linked lists, binary trees,
hash tables, and array wrappers (lists, stacks, queues, etc.) during debugging or
workbench use. When a positive identification is made, an appropriate
presentation view of the object is displayed. The structure identifier is intended
to work for user classes, including textbook examples, as well as the most
commonly used classes in the Java Collections Framework (e.g., ArrayList,
LinkedList, HashMap, and TreeMap).

The Viewer Canvas allows users to create visualizations of their programs
using multiple dynamic viewers. After a canvas for a program is saved, the
program can be “run in the canvas” which launches the program in the debugger
and opens the canvas file. The user can then “play” the program as well as use
the debug controls to see the program visualization. The canvas can provide a
conceptual visualization similar to what one might find in a textbook but with
the added benefit of being dynamically updated as the user steps through the
program. This allows for the exploration of the inner workings of a program
regardless of its apparent complexity. The visualizations provided by the canvas
are useful for general program understanding as well as traditional debugging.

The Workbench, in conjunction with the UML class diagram, CSD window,
and Interactions, allows the user to create instances of classes and invoke their
methods. Primitive and reference variables declared and assigned in
Interactions are automatically placed on the Workbench. After an object is
placed on the Workbench, the user can open a viewer to observe changes
resulting from the methods that are invoked. The Workbench paradigm has
proven to be extremely useful for teaching and learning object-oriented
concepts, especially for beginning students.

The Integrated Debugger works in conjunction with the CSD window, UML
window, Object Workbench, and Interactions. The Debugger provides a
seamless way for users to examine their programs step by step. The execution
threads, call stack, and local variables are easily viewable during each step. The
Debugger provided the foundation for the dynamic viewers and viewer canvas.

The Interactions (new in jGRASP 1.8.7) feature allows users to enter most Java
statements and expressions and then execute or evaluate them immediately.
Interactions can be especially helpful when learning and experimenting with

Overview (2.0.0) 8/8/2013

3

new elements in the Java language. Results are shown in the workbench and in
any open viewers or canvas windows associated with the variables and/or
expressions.

Plug-ins for Checkstyle, FindBugs, Dead Code Detector (DCD), JUnit, and
Web-CAT are included with jGRASP. If these tools are installed in a
conventional location, jGRASP will find them automatically; otherwise, the user
simply configures the tool with the appropriate path for its executable.

The jGRASP Tutorials provide best results when read while using jGRASP;
however, they are sufficiently detailed to be read in a stand-alone fashion by a
user who has experience with one or more other IDEs. The tutorials are quite
suitable as supplemental assignments during a course. When working with
jGRASP and the tutorials, students can use their own source code, or they can
use the examples shown in the tutorials (..\jGRASP\examples\Tutorials\). Users
should copy the examples folder to their personal directories prior to modifying
them.

For additional information and to download jGRASP, please visit our web site
(http://www.jgrasp.org).

http://www.jgrasp.org/

